7.5 Future Applications: Building Information Modeling and Digital Twins

Guide Home / 7. Information and Systems

Section 7.5 NEW SECTION

Future Applications: Building Information Modeling and Digital Twins

Building Information Modeling (BIM) is transforming transportation asset management by providing a digital representation of infrastructure assets throughout their lifecycle. BIM facilitates centralized data management, real-time monitoring of asset condition, efficient maintenance planning, and simulation for performance analysis. The CRP Project TFRS-02, completed in 2023, produced a business case for BIM adoption in infrastructure, emphasizing cost savings, time efficiency, and tools for agencies to assess BIM implementation benefits.

Section 7.5

Future Applications: Building Information Modeling and Digital Twins


Building Information Modeling (BIM) is transforming transportation asset management by providing a digital representation of infrastructure assets throughout their lifecycle. BIM facilitates centralized data management, real-time monitoring of asset condition, efficient maintenance planning, and simulation for performance analysis. The CRP Project TFRS-02, completed in 2023, produced a business case for BIM adoption in infrastructure, emphasizing cost savings, time efficiency, and tools for agencies to assess BIM implementation benefits.


7.5.1

Building Information Modeling


This subsection discusses Building Information Modeling (BIM) for Transportation as an emerging practice that integrates asset data across the planning, design, construction, operation, and lifecycle management of transportation assets. BIM's comprehensive digital representation streamlines access to asset information, facilitates condition assessment, supports informed decision-making, and enhances efficiency and safety in managing transportation infrastructure.


BIM Overview

Building Information Modeling (BIM) for Transportation is an emerging practice that supports asset data integration across the planning, design, construction, and lifecycle management and operation of an asset. A robust BIM implementation can support the development and maintenance of a digital twin of an asset, useful in asset maintenance and operations decision-making throughout the life of the asset. A digital twin is defined as a highly detailed virtual representation of a physical asset, reflecting its real-world configurations, historical updates, and maintenance activities throughout its lifecycle. It includes information on rehabilitation and repair actions, as well as the impacts of other related projects. The tool allows transportation agencies to enhance their efficiency in operating, maintaining, planning, scoping, developing, and delivering future investments related to the asset.

In the realm of transportation infrastructure, Building Information Modeling is revolutionizing asset management practices by providing a comprehensive digital representation of assets throughout their lifecycle. BIM's ability to integrate asset data, facilitate condition assessment, and enable informed decision-making is transforming the way transportation agencies manage their valuable infrastructure.

BIM serves as a centralized repository for asset information, encompassing geometric details, material properties, maintenance records, and inspection reports, thereby streamlining access to crucial information, and enabling efficient analysis and better decision-making. Moreover, BIM allows real-time monitoring of asset condition, enabling proactive maintenance and early detection of potential issues. This proactive approach prevents costly failures and extends asset lifespan, optimizing resource allocation and minimizing disruptions to transportation operations.

BIM's ability to simulate maintenance activities allows for more efficient planning and scheduling of tasks, ensuring optimal resource allocation and minimal disruptions to transportation operations. Furthermore, BIM enables performance analysis and simulation under various scenarios, such as traffic loads, weather events, or natural disasters, thereby identifying potential vulnerabilities and assessing the effectiveness of mitigation strategies. This comprehensive approach to asset management ensures the continued performance and reliability of transportation infrastructure, enhancing safety and resilience.

TAM Webinar #42 - TAM and BIM


7.5.2

CRP Project TFRS-02


This page discusses the completion of CRP Project TFRS-02 and the resulting publication of CRP Special Release 4, focusing on the application of Building Information Modeling (BIM) in transportation asset management. It outlines key uses of BIM, such as asset data management, condition assessment, maintenance planning, and resilience planning, emphasizing its transformative role and potential cost and time savings.


TAM Webinar #51 - TAM and Transportation Systems Management and Operations (TSMO)

CRP Project TFRS-02 was completed in 2023, resulting in publication of CRP Special Release 4: Lifecycle BIM for Infrastructure: A Business Case for Project Delivery and Asset Management. This report presents guidance and resources to advance adoption of BIM in infrastructure as developed based on a request to evaluate the business case for BIM by quantifying how enterprise-wide BIM systems can lead to agency efficiencies and improved cost savings.

BIM can be a powerful tool for transportation asset management, providing a comprehensive digital representation of transportation infrastructure assets throughout their lifecycle. Here are some key applications of BIM in transportation asset management:

  1. Asset Inventory and Data Management: BIM models can serve as a centralized repository for asset data, including geometric information, material properties, maintenance records, and inspection reports. This centralized data management facilitates efficient access to asset information for decision-making and analysis.
  2. Condition Assessment and Monitoring: BIM models can be integrated with sensor data and inspection reports to provide real-time monitoring of asset condition. This enables proactive maintenance and early detection of potential issues, preventing costly failures and extending asset lifespan.
  3. Maintenance Planning and Scheduling: BIM models can be used to visualize and simulate maintenance activities, allowing for more efficient planning and scheduling of maintenance tasks. This can optimize resource allocation and minimize disruptions to transportation operations.
  4. Performance Analysis and Simulation: BIM models can be used to simulate asset performance under various scenarios, such as traffic loads, weather events, or natural disasters. This helps identify potential vulnerabilities and assess the effectiveness of mitigation strategies.
  5. Decision-Making and Investment Prioritization: BIM models can provide valuable insights for decision-making regarding asset management investments. By analyzing asset condition, performance, and risk factors, BIM can help prioritize maintenance, rehabilitation, or replacement projects.
  6. Resilience Planning and Adaptation: BIM models can be used to assess the resilience of transportation assets to extreme events and climate change. This information can guide the development of resilience strategies, such as hardening assets or improving redundancy.

Overall, BIM offers a transformative approach to transportation asset management, enabling informed decision-making, efficient maintenance practices, and enhanced resilience of transportation infrastructure. As BIM technology continues to evolve, its role in transportation asset management is expected to expand further, leading to more sustainable and resilient transportation systems.

TFRS-02 identified benefits for BIM implementation included time savings from improved design efficiency, time saved on completing design quantities, time saved from reusing previous BIM content for future similar work, and cost savings from avoided change orders. These savings represent value typically captured during project design and delivery, however further efficiencies can be captured in asset management and operation where additional in-house agency cost savings, project cost savings, staff time savings, and user benefits can be realized.

The TFRS-02 project also developed a series of complementary spreadsheet tools to assist transportation agencies with identifying costs and benefits for implementing BIM for Infrastructure and evaluating their current BIM maturity. Supporting these tools is a multi-media toolkit with addressing frequently asked quotations, and providing presentation materials directed at various levels of agency staff.

Transportation Research Board

The CRP Special Release 4 multi-media toolkit includes video interviews with TRB panel members and research team members regarding the TFRS-02 study findings and lessons learned.

Further information on the multi-media toolkit & interviews available at: https://www.trb.org/Publications/Blurbs/182837.aspx



Transportation Research Board

The CRP Special Release 4 multi-media toolkit includes video interviews with TRB panel members and research team members regarding the TFRS-02 study findings and lessons learned.

Further information on the multi-media toolkit & interviews available at: https://www.trb.org/Publications/Blurbs/182837.aspx