7.5.2.1

Guide Home / 7. Information and Systems / 7.5 Future Applications: Building Information Modeling and Digital Twins / 7.5.2 CRP Project TFRS-02

7.5.2.1

TAM Webinar #51 - TAM and Transportation Systems Management and Operations (TSMO)

CRP Project TFRS-02 was completed in 2023, resulting in publication of CRP Special Release 4: Lifecycle BIM for Infrastructure: A Business Case for Project Delivery and Asset Management. This report presents guidance and resources to advance adoption of BIM in infrastructure as developed based on a request to evaluate the business case for BIM by quantifying how enterprise-wide BIM systems can lead to agency efficiencies and improved cost savings.

BIM can be a powerful tool for transportation asset management, providing a comprehensive digital representation of transportation infrastructure assets throughout their lifecycle. Here are some key applications of BIM in transportation asset management:

  1. Asset Inventory and Data Management: BIM models can serve as a centralized repository for asset data, including geometric information, material properties, maintenance records, and inspection reports. This centralized data management facilitates efficient access to asset information for decision-making and analysis.
  2. Condition Assessment and Monitoring: BIM models can be integrated with sensor data and inspection reports to provide real-time monitoring of asset condition. This enables proactive maintenance and early detection of potential issues, preventing costly failures and extending asset lifespan.
  3. Maintenance Planning and Scheduling: BIM models can be used to visualize and simulate maintenance activities, allowing for more efficient planning and scheduling of maintenance tasks. This can optimize resource allocation and minimize disruptions to transportation operations.
  4. Performance Analysis and Simulation: BIM models can be used to simulate asset performance under various scenarios, such as traffic loads, weather events, or natural disasters. This helps identify potential vulnerabilities and assess the effectiveness of mitigation strategies.
  5. Decision-Making and Investment Prioritization: BIM models can provide valuable insights for decision-making regarding asset management investments. By analyzing asset condition, performance, and risk factors, BIM can help prioritize maintenance, rehabilitation, or replacement projects.
  6. Resilience Planning and Adaptation: BIM models can be used to assess the resilience of transportation assets to extreme events and climate change. This information can guide the development of resilience strategies, such as hardening assets or improving redundancy.

Overall, BIM offers a transformative approach to transportation asset management, enabling informed decision-making, efficient maintenance practices, and enhanced resilience of transportation infrastructure. As BIM technology continues to evolve, its role in transportation asset management is expected to expand further, leading to more sustainable and resilient transportation systems.

TFRS-02 identified benefits for BIM implementation included time savings from improved design efficiency, time saved on completing design quantities, time saved from reusing previous BIM content for future similar work, and cost savings from avoided change orders. These savings represent value typically captured during project design and delivery, however further efficiencies can be captured in asset management and operation where additional in-house agency cost savings, project cost savings, staff time savings, and user benefits can be realized.

The TFRS-02 project also developed a series of complementary spreadsheet tools to assist transportation agencies with identifying costs and benefits for implementing BIM for Infrastructure and evaluating their current BIM maturity. Supporting these tools is a multi-media toolkit with addressing frequently asked quotations, and providing presentation materials directed at various levels of agency staff.